资源类型

期刊论文 110

年份

2023 11

2022 7

2021 6

2020 8

2019 4

2018 5

2017 8

2016 2

2015 3

2014 3

2013 2

2012 7

2011 2

2010 6

2009 6

2008 8

2007 6

2006 1

2005 2

2004 1

展开 ︾

关键词

DX桩 1

LMS 1

Mallat算法 1

Meyer小波变换 1

TBM 刀盘设计 1

TBM 效率 1

三峡工程 1

低污染 1

低油耗 1

全断面变径滑模 1

刀具布置形式 1

刀盘布置 1

切削碾压 1

前沿新材料,产业基础能力,尖端科技,材料基因工程,双循环,碳达峰与碳中和 1

加窗 1

单波束测距 1

压电陶瓷 1

呼吸性粉尘 1

地下工程 1

展开 ︾

检索范围:

排序: 展示方式:

Effects of inclination angles of disc cutter on machining quality of Nomex honeycomb core in ultrasoniccutting

Yidan WANG, Renke KANG, Yan QIN, Qian MENG, Zhigang DONG

《机械工程前沿(英文)》 2021年 第16卷 第2期   页码 285-297 doi: 10.1007/s11465-021-0631-9

摘要: Ultrasonic cutting with a disc cutter is an advanced machining method for the high-quality processing of Nomex honeycomb core. The machining quality is influenced by ultrasonic cutting parameters, as well as tool orientations, which are determined by the multi-axis machining requirements and the angle control of the cutting system. However, in existing research, the effect of the disc cutter orientation on the machining quality has not been studied in depth, and practical guidance for the use of disc cutters is lacking. In this work, the inclined ultrasonic cutting process with a disc cutter was analyzed, and cutting experiments with different inclination angles were conducted. The theoretical residual height models of the honeycomb core, as a result of the lead and tilt angles, were established and verified with the results obtained by a linear laser displacement sensor. Research shows that the residual height of the honeycomb core, as a result of the tilt angle, is much larger than that as a result of the lead angle. Furthermore, the tearing of the cell wall on the machined surface was observed, and the effects of the ultrasonic vibration, lead angle, and tilt angle on the tear rate and tear length of the cell wall were studied. Experimental results revealed that ultrasonic vibration can effectively decrease the tearing of the cell wall and improve the machining quality. Changes in the tilt angle have less effect than changes in the lead angle on the tearing of the cell wall. The determination of inclination angles should consider the actual processing requirements for the residual height and the machining quality of the cell wall. This study investigates the influence of the inclination angles of a disc cutter on the machining quality of Nomex honeycomb core in ultrasonic cutting and provides guidelines for machining.

关键词: Nomex honeycomb core     disc cutter     inclined ultrasonic cutting     machining quality    

Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0729-8

摘要: When ultrasonically cutting honeycomb core curved parts, the tool face of the straight blade must be along the curved surface’s tangent direction at all times to ensure high-quality machining of the curved surface. However, given that the straight blade is a nonstandard tool, the existing computer-aided manufacturing technology cannot directly realize the above action requirement. To solve this problem, this paper proposed an algorithm for extracting a straight blade real-time tool face vector from a 5-axis milling automatically programmed tool location file, which can realize the tool location point and tool axis vector conversion from the flat end mill to the straight blade. At the same time, for the multi-solution problem of the rotation axis, the dependent axis rotation minimization algorithm was introduced, and the spindle rotation algorithm was proposed for the tool edge orientation problem when the straight blade is used to machine the curved part. Finally, on the basis of the MATLAB platform, the dependent axis rotation minimization algorithm and spindle rotation algorithm were integrated and compiled, and the straight blade ultrasonic cutting honeycomb core postprocessor was then developed. The model of the machine tool and the definition of the straight blade were conducted in the VERICUT simulation software, and the simulation machining of the equivalent entity of the honeycomb core can then be realized. The correctness of the numerical control program generated by the postprocessor was verified by machining and accuracy testing of the two designed features. Observation and analysis of the simulation and experiment indicate that the tool pose is the same under each working condition, and the workpieces obtained by machining also meet the corresponding accuracy requirements. Therefore, the postprocessor developed in this paper can be well adapted to the honeycomb core ultrasonic cutting machine tool and realize high-quality and high-efficient machining of honeycomb core composites.

关键词: honeycomb core     straight blade     ultrasonic cutting     tool pose     postprocessor    

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0715-1

摘要: Nanoscale surface roughness of tungsten heavy alloy components is required in the nuclear industry and precision instruments. In this study, a high-performance ultrasonic elliptical vibration cutting (UEVC) system is developed to solve the precision machining problem of tungsten heavy alloy. A new design method of stepped bending vibration horn based on Timoshenko’s theory is first proposed, and its design process is greatly simplified. The arrangement and working principle of piezoelectric transducers on the ultrasonic vibrator using the fifth resonant mode of bending are analyzed to realize the dual-bending vibration modes. A cutting tool is installed at the end of the ultrasonic vibration unit to output the ultrasonic elliptical vibration locus, which is verified by finite element method. The vibration unit can display different three-degree-of-freedom (3-DOF) UEVC characteristics by adjusting the corresponding position of the unit and workpiece. A dual-channel ultrasonic power supply is developed to excite the ultrasonic vibration unit, which makes the UEVC system present the resonant frequency of 41 kHz and the maximum amplitude of 14.2 μm. Different microtopography and surface roughness are obtained by the cutting experiments of tungsten heavy alloy hemispherical workpiece with the UEVC system, which validates the proposed design’s technical capability and provides optimization basis for further improving the machining quality of the curved surface components of tungsten heavy alloy.

关键词: tungsten heavy alloy     ultrasonic elliptical vibration cutting     Timoshenko’s theory     resonant mode of bending     finite element method    

Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics

A. SHAFIEI

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 527-535 doi: 10.1007/s11709-018-0450-1

摘要: Peridynamics is a theory in solid mechanics that uses integral equations instead of partial differential equations as governing equations. It can be applied to fracture problems in contrast to the approach of fracture mechanics. In this paper by using peridynamics, the crack path for inclined crack under dynamic loading were investigated. The peridynamics solution for this problem represents the main features of dynamic crack propagation such as crack bifurcation. The problem is solved for various angles and different stress values. In addition, the influence of geometry on inclined crack growth is studied. The results are compared with molecular dynamic solutions that seem to show reasonable agreement in branching position and time.

关键词: peridynamics     inclined crack     dynamic fracture     crack branching    

Centrifuge model test on dynamic behavior of group-pile foundation with inclined piles and its numerical

ZHANG Feng, OKAWA Katsunori, KIMURA Makoto

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 233-241 doi: 10.1007/s11709-008-0033-7

摘要: In this paper, dynamic behavior of a group-pile foundation with inclined piles in loose sand has been investigated with centrifuge model tests. The test results are also simulated with elastoplastic dynamic finite element method, in which, not only sectional force of piles, stress of ground, but also deformation of piles are calculated using a three-dimensional elastoplastic dynamic finite element analysis (Code name: DGPILE-3D). The numerical analyses are conducted with a full system in which a superstructure, a pile foundation and surrounding ground are considered together so that interaction between pile foundation and soils can be properly simulated because the nonlinearities of both the pile and the ground are described with suitable constitutive models. Different types of piles, vertical pile or inclined pile, are considered in order to verify the different characteristics of a group pile foundation with inclined piles. The validity of the calculation is verified by the model tests.

关键词: centrifuge     Different     three-dimensional elastoplastic     calculation     inclined    

Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating

Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard

《化学科学与工程前沿(英文)》 2017年 第11卷 第2期   页码 280-289 doi: 10.1007/s11705-017-1635-1

摘要: This article reports the different steps of the design, development and validation of a process for continuous production of carbon nanotubes (CNTs) via catalytic chemical vapor deposition from the laboratory scale to the industrial production. This process is based on a continuous inclined mobile-bed rotating reactor and very active catalysts using methane or ethylene as carbon source. The importance of modeling taking into account the hydrodynamic, physicochemical and physical phenomena that occur during CNT production in the process analysis is emphasized. The impact of this invention on the environment and human health is taken into consideration too.

关键词: carbon nanotubes     catalytic chemical vapor deposition     inclined rotating reactor     industrial process     scaling-up    

density measurement for plastic injection molding via ultrasonic technology

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0714-2

摘要: Density variation during the injection molding process directly reflects the state of plastic melt and contains valuable information for process monitoring and optimization. Therefore, in-situ density measurement is of great interest and has significant application value. The existing methods, such as pressure−volume−temperature (PVT) method, have the shortages of time-delay and high cost of sensors. This study is the first to propose an in-situ density measurement method using ultrasonic technology. The analyses of the time-domain and frequency-domain signals are combined in the proposed method. The ultrasonic velocity is obtained from the time-domain signals, and the acoustic impedance is computed through a full-spectral analysis of the frequency-domain signals. Experiments with different process conditions are conducted, including different melt temperature, injection speed, material, and mold structure. Results show that the proposed method has good agreement with the PVT method. The proposed method has the advantages of in-situ measurement, non-destructive, high accuracy, low cost, and is of great application value for the injection molding industry.

关键词: ultrasonic measurement     melt density     in-situ measurement     injection molding    

Experiments on channel columns with inclined simple edge stiffeners under compression loading

WANG Chungang, ZHANG Yaochun, ZHANG Zhuangnan

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 312-321 doi: 10.1007/s11709-007-0041-z

摘要: In order to investigate the compression behavior of pin-ended cold-formed channel columns with inclined simple edge stiffeners, a total of 30 pin-ended cold-formed channel columns with three sections (sloping lip stiffener turned at 45º, 90º, and 135º to the flange, respectively) and three different lengths (500 mm, 1 250 mm, and 2 000 mm) were tested. It was found that the inclination angles and loading positions have an obvious effect on compression ultimate load-carrying capacities and failure modes. All three sections have certain post-buckling strength, and the failure modes of most of the specimens contained distortional buckling. The capacity of the specimens with 45º inclined angle for bearing compression is appreciably higher than the other two types of specimens with 90º or 135º inclined angles at the same negative eccentricity, but obviously lower than the other two at the same positive eccentricity. Furthermore, tests were simulated by finite element analysis. Results from the analysis are in great agreement with the experimental data.

关键词: different     post-buckling strength     capacity     distortional buckling     Furthermore    

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 631-644 doi: 10.1007/s11465-020-0599-x

摘要: The ever-increasing requirements for the scalable manufacturing of atomic-scale devices emphasize the significance of developing atomic-scale manufacturing technology. The mechanism of a single atomic layer removal in cutting is the key basic theoretical foundation for atomic-scale mechanical cutting. Material anisotropy is among the key decisive factors that could not be neglected in cutting at such a scale. In the present study, the crystallographic orientation effect on the cutting-based single atomic layer removal of monocrystalline copper is investigated by molecular dynamics simulation. When undeformed chip thickness is in the atomic scale, two kinds of single atomic layer removal mechanisms exist in cutting-based single atomic layer removal, namely, dislocation motion and extrusion, due to the differing atomic structures on different crystallographic planes. On close-packed crystallographic plane, the material removal is dominated by the shear stress-driven dislocation motion, whereas on non-close packed crystallographic planes, extrusion-dominated material removal dominates. To obtain an atomic, defect-free processed surface, the cutting needs to be conducted on the close-packed crystallographic planes of monocrystalline copper.

关键词: ACSM     single atomic layer removal mechanism     crystallographic orientation effect     mechanical cutting     Manufacturing III    

Linear ultrasonic motor using quadrate plate transducer

Jiamei JIN, Chunsheng ZHAO

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 88-91 doi: 10.1007/s11465-009-0016-y

摘要: A linear ultrasonic motor using a quadrate plate transducer was developed for precision positioning. This motor consists of two pairs of Pb(Zr,Ti)O piezoelectric ceramic elements, which are piezoelectrically excited into the second-bending mode of the motor stator’s neutral surface in two orthogonal directions, on which the tops of four projections move along an elliptical trajectory, which in turn drives a contacted slider into linear motion via frictional forces. The coincident frequency of the stator is easily obtained for its coincident characteristic dimension in two orthogonal directions. The performance characteristics achieved by the motor are: 1) a maximum linear speed of more than 60 mm/s; 2) a stroke of more than150 mm; 3) a driving force of more than 5.0 N; and 4) a response time of about 2 ms.

关键词: ultrasonic motor     quadrate plate     coincident frequency     alternant contact    

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0730-2

摘要: Ultrasonic vibration-assisted grinding (UVAG) is an advanced hybrid process for the precision machining of difficult-to-cut materials. The resonator is a critical part of the UVAG system. Its performance considerably influences the vibration amplitude and resonant frequency. In this work, a novel perforated ultrasonic vibration platform resonator was developed for UVAG. The holes were evenly arranged at the top and side surfaces of the vibration platform to improve the vibration characteristics. A modified apparent elasticity method (AEM) was proposed to reveal the influence of holes on the vibration mode. The performance of the vibration platform was evaluated by the vibration tests and UVAG experiments of particulate-reinforced titanium matrix composites. Results indicate that the reasonable distribution of holes helps improve the resonant frequency and vibration mode. The modified AEM, the finite element method, and the vibration tests show a high degree of consistency for developing the perforated ultrasonic vibration platform with a maximum frequency error of 3%. The employment of ultrasonic vibration reduces the grinding force by 36% at most, thereby decreasing the machined surface defects, such as voids, cracks, and burnout.

关键词: ultrasonic vibration-assisted grinding     perforated ultrasonic vibration platform     vibration characteristics     apparent elasticity method     grinding force     surface integrity    

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction aroundthe cutting zone

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 81-88 doi: 10.1007/s11465-019-0561-y

摘要: Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.

关键词: tool friction     minimum cutting thickness     finite element method     tool edge radius     micro cutting    

Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections

Jin ZENG, Chenguang ZHAO, Hui MA, Bangchun WEN

《机械工程前沿(英文)》 2020年 第15卷 第3期   页码 374-389 doi: 10.1007/s11465-019-0580-8

摘要: In the existing literature, most studies investigated the free vibrations of a rotating pre-twisted cantilever beam; however, few considered the effect of the elastic-support boundary and the quantification of modal coupling degree among different vibration directions. In addition, Coriolis, spin softening, and centrifugal stiffening effects are not fully included in the derived equations of motion of a rotating beam in most literature, especially the centrifugal stiffening effect in torsional direction. Considering these deficiencies, this study established a coupled flapwise–chordwise–axial–torsional dynamic model of a rotating double-tapered, pre-twisted, and inclined Timoshenko beam with elastic supports based on the semi-analytic method. Then, the proposed model was verified with experiments and ANSYS models using Beam188 and Shell181 elements. Finally, the effects of setting and pre-twisted angles on the degree of coupling among flapwise, chordwise, and torsional directions were quantified via modal strain energy ratios. Results showed that 1) the appearance of torsional vibration originates from the combined effect of flapwise–torsional and chordwise–torsional couplings dependent on the Coriolis effect, and that 2) the flapwise–chordwise coupling caused by the pure pre-twisted angle is stronger than that caused by the pure setting angle.

关键词: elastic-support boundary     pre-twisted beam     semi-analytic method     modal strain energy ratio     torsional vibration    

Displacement and force analyses of piles in the pile-caisson composite structure under eccentric inclined

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0957-y

摘要: A novel anchorage for long-span suspension bridges, called pile-caisson composite structures, was recently proposed by the authors in an attempt to reduce the construction period and costs. This study aims to investigate the displacement and force behavior of piles in a pile-caisson composite structure under eccentric inclined loading considering different stratum features. To this end, both 1g model tests and three-dimensional numerical simulations were performed. Two groups of 1g model tests were used to validate the finite-element (FE) method. Parametric studies were then performed to investigate the effects of groundwater level, burial depth of the pile-caisson composite structure, and distribution of soil layers on the performance of the pile-caisson composite structure. The numerical analyses indicated that the influence of the groundwater level on the stability of the caisson was much greater than that of the piles. In addition, increasing the burial depth of the pile-caisson composite structure can assist in reducing the displacements and improving the stability of the pile-caisson composite structure. In addition, the distribution of soil layers can significantly affect the stability of the pile-caisson composite structure, especially the soil layer around the caisson.

关键词: composite structure     piles     foundation     suspension bridge     1g model test     finite-element analysis    

Improving the performances of ultrasonic motors using intermittent contact scheme

Jiamei JIN, Jianhui ZHANG, Fu QIAN, Zhenfeng PAN,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 242-246 doi: 10.1007/s11465-010-0016-y

摘要: Most ultrasonic motors operate in intermittent contact scheme. Their stators drive the rotors (or sliders) when the stators contact the rotors, and the rotors (or sliders) move under an inertia force when the stators and the rotors are separated. The duty cycle of the contact and the “flight” manages motors’ output performance. To obtain a large output force or output velocity, this paper proposes a concept using the alternative work of a multi-stator or the multi-driving end of a single stator. The method can avoid larger noise, poor efficiency, and lifetime of motors. A novel linear ultrasonic motor using the alternative work of the multi-driving end of a single stator was fabricated and investigated experimentally. The traveling speed without load of the slider is 88 mm/s, and the maximum load is 0.32 N.

关键词: ultrasonic motor     intermittent contact     alternative work    

标题 作者 时间 类型 操作

Effects of inclination angles of disc cutter on machining quality of Nomex honeycomb core in ultrasoniccutting

Yidan WANG, Renke KANG, Yan QIN, Qian MENG, Zhigang DONG

期刊论文

Postprocessor development for ultrasonic cutting of honeycomb core curved surface with a straight blade

期刊论文

Design of ultrasonic elliptical vibration cutting system for tungsten heavy alloy

期刊论文

Dynamic crack propagation in plates weakened by inclined cracks: an investigation based on peridynamics

A. SHAFIEI

期刊论文

Centrifuge model test on dynamic behavior of group-pile foundation with inclined piles and its numerical

ZHANG Feng, OKAWA Katsunori, KIMURA Makoto

期刊论文

Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating

Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard

期刊论文

density measurement for plastic injection molding via ultrasonic technology

期刊论文

Experiments on channel columns with inclined simple edge stiffeners under compression loading

WANG Chungang, ZHANG Yaochun, ZHANG Zhuangnan

期刊论文

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

期刊论文

Linear ultrasonic motor using quadrate plate transducer

Jiamei JIN, Chunsheng ZHAO

期刊论文

Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform

期刊论文

Modeling of the minimum cutting thickness in micro cutting with consideration of the friction aroundthe cutting zone

Tianfeng ZHOU, Ying WANG, Benshuai RUAN, Zhiqiang LIANG, Xibin WANG

期刊论文

Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections

Jin ZENG, Chenguang ZHAO, Hui MA, Bangchun WEN

期刊论文

Displacement and force analyses of piles in the pile-caisson composite structure under eccentric inclined

期刊论文

Improving the performances of ultrasonic motors using intermittent contact scheme

Jiamei JIN, Jianhui ZHANG, Fu QIAN, Zhenfeng PAN,

期刊论文